STCP keepalive

The first thing you have to realize about the STCP keepalive timer mechanism is that there are two flags that must be set. One is on the interface and the other on the socket. The interface flag is set by the value of the kalive argument on the ifconfig command, the default is yes. If this parameter is set to no, then it doesn’t matter what the socket flag is set to, no keepalive probes will be sent. The value of the flag is displayed by the ifconfig command. The following shows the ifconfig commands to configure an interface and also to display the status of an existing interface. The form display shows that the default value of kalive is yes.

ifconfig #sdlmux2 10.1.1.203 -netmask 255.255.255.0 –add –form
---------------------------------- ifconfig --------------------------------

 interface:

#sdlmux2

 name/address:
10.1.1.203

 -add: yes

 -delete: no

 -state:

 -netmask:

255.255.255.0

 -forwb: no

 -kalive: yes

 -mtu:

 -broadcast_type:

 -all: no

 -ask: yes

 -alias: no

Adding interface %phx_cac_j14#sdlmux2 with IP address 10.1.1.203

. . .

ifconfig #sdlmux2

%phx_cac_j14#sdlmux2: <UP, BROADCAST, RUNNING, NOFORWARDBROADCAST, KEEPALIVE>

 10.1.1.203 netmask 0xffffff00 broadcast 10.1.1.255

This shows the ifconfig command to configure the interface to not allow keepalives and again to display the status of the interface.
ifconfig #sdlmux2 10.1.1.203 -netmask 255.255.255.0 -no_kalive -add

Adding interface %phx_cac_j14#sdlmux2 with IP address 10.1.1.203

. . .

ifconfig #sdlmux2

%phx_cac_j14#sdlmux2: <UP, BROADCAST, RUNNING, NOFORWARDBROADCAST, NOKEEPALIVE>

 10.1.1.203 netmask 0xffffff00 broadcast 10.1.1.255

The reason for this flag has to do with the original design of the keepalive probing mechanism. Originally, the first keepalive probe would be sent out after 2 minutes of inactivity and continue every 2 minutes for 80 probes. There was no way to alter this pattern. If none of the 80 probes were answered the socket associated with the connection would be cleared. This obviously generated a lot of bytes and the designers of STCP wanted to allow a system administer the ability to prevent keepalives on interfaces associated with links that charged on a per byte basis.
There are now four different methods of handling keepalives based on the release you are running.
The Way Old Way (pre VOS 14.5.0ae)

On releases before stcp-1321 was fixed (pre VOS 14.5.0ae) there is no way to change the keepalive behavior.
The Old Way (VOS 14.5.0ae and later)

The keepalive timers for applications running on a VOS 14.5.0ae or later system but that were bound on a pre 14.5.0ae system are controlled by two tuning variables.
tcp_keepalive_oldkeep_cnt$

Default value is 5A0x = 1440 decimal

Calculates to 115.2 seconds

tcp_keepalive_oldkeep_tries$

Default value is 50x = 80 decimal

tcp_keepalive_check_if_dead$

Default value is 3AAx = 938 decimal

Calculates to 75.4 seconds

The tcp_keepalive_oldkeep_cnt$ value controls when the first keepalive probe is sent. The value that these timers should be set to is a little tricky. The code that decrements the timer is called once every 0.08 seconds, so for N seconds the value must be set to N times 12.5. As you can see the value is not quite 120 seconds.

The tcp_keepalive_oldkeep_tries$ value controls how many probes will be sent before the connection is considered failed and the socket cleared.

The tcp_keepalive_check_if_dead$ value controls the time interval between unanswered probes. Note that once a probe is answered, the connection is no longer considered idle and the next probe will be sent based on the value of the tcp_keepalive_oldkeep_cnt$ variable. Prior to 14.5.0ae the value used worked out to 120 seconds. The value as of release 14.5.0ae calculates to 75 seconds, so applications will time out slightly faster.
 The keepalive timer is stored in the socket structure. The timer value will have either the initial time (from tcp_keepalive_oldkeep_cnt$) or the interval time (from tcp_keepalive_check_if_dead$) depending on the state of the connection. Once this timer is set in a socket it cannot be changed until it expires. The timer will expire either when it reaches 0 or a packet is received on the connection. When the timer is set again it will use the current value of tcp_keepalive_oldkeep_cnt$ or tcp_keepalive_check_if_dead$.
The New Way (VOS 14.5.0al and later or 14.6.0aj and later)
Applications bound after release 14.5.0ae and running on releases later than 14.5.0al or 14.6.0aj use the following tuning variables (added to fix stcp-1321) to control the behavior of keepalive. (Don’t worry about the releases between 14.50ae and 14.5.0al and 14.6.0aj they’re covered next).

tcp_keepalive_keep_cnt$

Default value is 15F90x = 90000 decimal

Calculates to 7200 seconds (2 hours)

tcp_keepalive_keep_tries$

Default value is 9
tcp_keepalive_check_if_dead$

Default value is 3AAx = 938

Calculates to 75 seconds

The tcp_keepalive_keep_cnt$ value controls when the first keepalive probe is sent. The value that these timers should be set to is a little tricky. The code that decrements the timer is called once every 0.08 seconds, so for N seconds the value must be set to N times 12.5. As you can see the value is 2 hours.

The tcp_keepalive_keep_tries$ value controls how many probes will be sent before the connection is considered failed and the socket cleared. Note that there is a 1 off bug dealing with this value; that is if you set this value to 5 only 4 probes are sent. This is bug stcp-2367.

When the socket is cleared the local side of the connection is cleaned up but there is no RST packet sent to the remote host. This could leave the remote host with an orphaned connection. The bug stcp-2349; implemented in releases 14.7.2ao. 15.2.0av, 15.3.0ac, 16.10ad, and 16.2, changes the behavior of STCP so that it sends a reset packet to the remote host before it cleans up the socket. If the problem is that STCP’s packets are not getting to the remote host, this will do no good; but if the problem is the remote’s hosts packets getting back to STCP this will allow the remote host to clean up its connections.
The tcp_keepalive_check_if_dead$ value controls the time interval between unanswered probes. Note that once a probe is answered, the connection is no longer considered idle and the next probe will be sent based on the value of the tcp_keepalive_keep_cnt$ variable.
 The keepalive timer is stored in the socket structure. The timer value will have either the initial time (from tcp_keepalive_keep_cnt$) or the interval time (from tcp_keepalive_check_if_dead$) depending on the state of the connection. Once this timer is set in a socket it cannot be changed until it expires. The timer will expire either when it reaches 0 or a packet is received on the connection. When the timer is set again it will use the current value of tcp_keepalive_keep_cnt$ or tcp_keepalive_check_if_dead$. Quick eyed individuals will note that the tcp_keepalive_check_if_dead$ variable is used in both the old and new ways.
The value of the initial keepalive timer is stored in the socket structure in the keepamount variable. The keepamount variable is set when keepalive is enabled either from a value passed to the system via the setsockopt call in the application (see below) or from the tcp_keepalive_keep_cnt$ variable. Because of this, once keepalive is enabled, changing the value of the tcp_keepalive_keep_cnt$ variable will have no effect on the socket.

The stcp-1322 bug fix changed the way that the setsockopt SO_KEEPALIVE option worked. Prior to 14.5.0ae the SO_KEEPALIVE option took an integer value, 0 indicated that keepalive probes should not be made on this connection and anything else indicated that probes should be made. The stcp-1322 bug fix allows you to pass in a structure similar to the linger structure

struct

 {

 int l_onoff; /* Option on/off */

 int l_timer; /* Linger time */

 } linger;

. . .

linger.l_onoff = 1;

linger.l_timer = 120;

if (setsockopt (sd_accepted, SOL_SOCKET, SO_KEEPALIVE,

(char *) &linger, sizeof (linger)) < 0)

 {

 printf ("test: Error %d setting keepalive on accepted socket", errno);

 exit ();

 }

A value of 0 in the on_off field indicates that keepalive probes should not be sent and any other value indicates that they should be sent. The seconds field indicates the number of seconds of idle time before the first probe is sent. The value of seconds can be 0 or range from 120 (2 minutes) thru 14,400 (4 hours). The system will factor in the 12.5 multiplier so you don’t have to worry about it here. A value of 0 indicates that the default from tcp_keepalive_keep_cnt$ should be used; anything else outside of the 120 to 14,400 range and setsockopt will return a value of e$usf_EINVAL (5022). If you set the timer this way then the value of tcp_keepalive_keep_cnt$ will not be used. Remember that in release prior to 14.5.0al and 14.6.0aj (stcp-1729 not fixed) any value set on a listening socket will not be carried over to an accepted socket. Further, you cannot then set a keepalive timer value on the accepted socket because the new_features flag has a zero value.

The Almost New Way (VOS 14.5.0ae to 14.5.0al or 14.6.0aj)

The “New Way” descriptions show how things are supposed to work in release 14.50ae and after. However bug stcp-1729 was introduced in along with stcp-1321. Because of this the “New Way” only applies to outgoing connections, i.e. connections made with a “connect” call. Incoming connections, i.e. connections made with an “accept” call are a combination of old and new ways. What happens is the initial probe timer is controlled by the value of tcp_keepalive_keep_cnt$ (the new way), but the number of probes to try before disconnecting is controlled by the value of tcp_keepalive_oldkeep_tries$ (the old way). The probe interval is still control by tcp_keepalive_check_if_dead$.
Displaying and changing the timers

All the timer values can be modified using the set_longword request in analyze_system.

Example:
as: set_longword tcp_keepalive_keep_tries$ 4

addr from to

FE696034 00000009 00000004

as: set_longword tcp_keepalive_check_if_dead$ 3ex

addr from to

FE696030 000003AA 0000003E

as: set_longword tcp_keepalive_keep_cnt$ 177

addr from to

FE696038 00015F90 00000177

Note: The set_longword command can accept a decimal value, so if you mean to set the value to a hex value, be sure to add the ‘x’ at the end. Also don’t forget to multiply the seconds by 12.5.
Starting in release 14.7.0 you can also use the list_stcp_params request to display the current value of these variables. The display format is

Description [min-max value]

option name

current value

Note that the option name is not the name of the external variable.

as: list_stcp_params

STCP Parameters:

. . .

keepalive time interval [1-480] (keepalive_time) 120 min

keepalive tries [1-25] (keepalive_tries) 9

keepalive check dead time [30-360] (check_if_dead) 75 sec

. . .

To see the actual variable names, use the “-long” option

as: list_stcp_params -long

STCP Parameters:

. . .
keepalive time interval [1-480] (keepalive_time) 120 min

 tcp_keepalive_keep_cnt$/4

keepalive tries [1-25] (keepalive_tries) 9

 tcp_keepalive_keep_tries$/4

keepalive check dead time [30-360] (check_if_dead) 75 sec

 tcp_keepalive_check_if_dead$/4
. . .

Also starting in release 14.7.0 you can change a value using the set_stcp_param request. For example to the tcp_keepalive_keep_cnt$ from 120 minutes to 60 minutes do:
as: set_stcp_param keepalive_time 60

Changing keepalive time interval (keepalive_time)

 from 120 min to 60 min

as:
The advantage of this is that you don’t have to remember the variable names, convert the values into hex or remember to multiply the time by 12.5.

How to verify that a socket has keepalive set and what the timer is
In order to look at the socket with analyze_system you need the address of the protocol control block (PCB). The easiest way to get that address is with netstat and the –PCB_addr argument. You can select the socket you are interested in by matching on the IP addresses and port numbers or just the port number for a listening socket (you will need the –all_sockets argument to display listening sockets).
netstat -numeric -PCB_addr

Active connections

PCB Proto Recv-Q Send-Q Local Address Foreign Address (state)

c306bb40 tcp 0 57 164.152.77.6:3000 164.152.77.67:1024 ESTABLISHED

c19f9c80 tcp 0 0 164.152.77.6:24017 164.152.79.67:3002 ESTABLISHED

c2e61d40 tcp 0 0 164.152.77.6:12885 164.152.77.67:3000 ESTABLISHED c2f65680 tcp 0 0 164.152.77.6:12963 164.152.77.67:3003 FIN_WAIT_2

To display the socket you use the dump_onetcb analyse_system request with the PCB address that was displayed by netstat. You can use the match feature of analyze_system to reduce the volume of output that dump_onetcb shows you.
To tell if keepalive has been set for a socket match on the opt_flag field. This field is a bit map. If bit 3 is set then keepalive is turned on for the socket. Since opt_flag is a bit map its actual value is really not predictable, but if there are no other options set the value will be 4.

as: match opt_flag;dump_onetcb c2e61d40
 opt_flag 4

One can display the *keep* values via the dump_onetcb as well:
as: match keep; dump_onetcb c2e61d40
 keepcnt 26

 keeptries 0

 keepamount 1500

The values of keepcnt and keepamount are in decimal. To get the value in seconds don’t forget to divide by 12.5. The keeptries value is the number of successive intervals where a probe has gone unanswered. When keeptries = *keep_tries$ the connection is terminated.

What actually appears on the network
This is what a trace of the probes looks like. I’ve shrunk the font and combined continuation lines to make it easier to read. Note the time stamps, every 120 seconds (approximately).
packet_monitor -numeric -time_stamp -filter -port 1150

 dir icmp type

+ tcp

hh:mm:ss.ttt len proto source destination src port dst port type

11:32:56.235 T 0001 TCP 164.152.77.203 164.152.77.50 49169 1150 A

11:32:56.283 R 0000 TCP 164.152.77.50 164.152.77.203 1150 49169 A

11:34:55.576 T 0001 TCP 164.152.77.203 164.152.77.50 49169 1150 A

11:34:55.577 R 0000 TCP 164.152.77.50 164.152.77.203 1150 49169 A

11:36:54.905 T 0001 TCP 164.152.77.203 164.152.77.50 49169 1150 A

11:36:54.906 R 0000 TCP 164.152.77.50 164.152.77.203 1150 49169 A

11:38:54.236 T 0001 TCP 164.152.77.203 164.152.77.50 49169 1150 A

11:38:54.237 R 0000 TCP 164.152.77.50 164.152.77.203 1150 49169 A

This is what a probe packet actually looks like. Notice that it has 1 byte of data, an upper case A. The sequence number in the probe is 41b6a760 and subsequent probes all have the same sequence number even though the “data” has been ACK’ed. The keepalive probe will always have the sequence number of the last byte of real data. The system being probed treats this as duplicate data which it just throws away but it does send back an ACK indicating what byte it expects to see next. Receiving this ACK means that the probe was successful.
packet_monitor -numeric -time_stamp -filter -port 1150 -form

 dir icmp type

+ tcp

hh:mm:ss.ttt dir len proto source destination src port ds

+t port type

11:22:16.156 Xmit Ether Dst 00:0c:6e:3f:ab:45 Src 00:00:a8:c0:81:de Type 0800

+(IP)

IP Ver/HL 45, ToS 0, Len 29, ID f6b5, Flg/Frg 0, TTL 3c, Prtl 6

 Cksum a3eb, Src a4984dcb, Dst a4984d32

TCP from 164.152.77.203.49170 to 164.152.77.50.1150

 seq 41b6a760, ack ce6332a4, window 2000, 1. data bytes, flags Ack.

 X/Off 05, Flags 10, Cksum bbf5, Urg-> 0000

 offset 0 . . . 4 . . . 8 . . . C . . . 0...4... 8...C...

 0 41 A

11:22:16.197 Rcvd Ether Dst 00:00:a8:c0:81:de Src 00:0c:6e:3f:ab:45 Type 0800

+(IP)

IP Ver/HL 45, ToS 0, Len 28, ID 17da, Flg/Frg 4000, TTL 80, Prtl 6

 Cksum fec7, Src a4984d32, Dst a4984dcb

TCP from 164.152.77.50.1150 to 164.152.77.203.49170

 seq ce6332a4, ack 41b6a761, window faf0, 0. data bytes, flags Ack.

 X/Off 05, Flags 10, Cksum 2205, Urg-> 0000

No tcp data.

11:24:15.485 Xmit Ether Dst 00:0c:6e:3f:ab:45 Src 00:00:a8:c0:81:de Type 0800

+(IP)

IP Ver/HL 45, ToS 0, Len 29, ID f6b6, Flg/Frg 0, TTL 3c, Prtl 6

 Cksum a3ea, Src a4984dcb, Dst a4984d32

TCP from 164.152.77.203.49170 to 164.152.77.50.1150

 seq 41b6a760, ack ce6332a4, window 2000, 1. data bytes, flags Ack.

 X/Off 05, Flags 10, Cksum bbf5, Urg-> 0000

 offset 0 . . . 4 . . . 8 . . . C . . . 0...4... 8...C...

 0 41 A

11:24:20.309 Rcvd Ether Dst 00:00:a8:c0:81:de Src 00:0c:6e:3f:ab:45 Type 0800

+(IP)

IP Ver/HL 45, ToS 0, Len 28, ID 17e6, Flg/Frg 4000, TTL 80, Prtl 6

 Cksum febb, Src a4984d32, Dst a4984dcb

TCP from 164.152.77.50.1150 to 164.152.77.203.49170

 seq ce6332a4, ack 41b6a761, window faf0, 0. data bytes, flags Ack.

 X/Off 05, Flags 10, Cksum 2205, Urg-> 0000

No tcp data.

11:26:14.816 Xmit Ether Dst 00:0c:6e:3f:ab:45 Src 00:00:a8:c0:81:de Type 0800

+(IP)

IP Ver/HL 45, ToS 0, Len 29, ID f6b7, Flg/Frg 0, TTL 3c, Prtl 6

 Cksum a3e9, Src a4984dcb, Dst a4984d32

TCP from 164.152.77.203.49170 to 164.152.77.50.1150

 seq 41b6a760, ack ce6332a4, window 2000, 1. data bytes, flags Ack.

 X/Off 05, Flags 10, Cksum bbf5, Urg-> 0000

 offset 0 . . . 4 . . . 8 . . . C . . . 0...4... 8...C...

 0 41 A

11:26:34.072 Rcvd Ether Dst 00:00:a8:c0:81:de Src 00:0c:6e:3f:ab:45 Type 0800

+(IP)

IP Ver/HL 45, ToS 0, Len 28, ID 181a, Flg/Frg 4000, TTL 80, Prtl 6

 Cksum fe87, Src a4984d32, Dst a4984dcb

TCP from 164.152.77.50.1150 to 164.152.77.203.49170

 seq ce6332a4, ack 41b6a761, window faf0, 0. data bytes, flags Ack.

 X/Off 05, Flags 10, Cksum 2205, Urg-> 0000

No tcp data.
Description of the bugs covered

stcp-1321 (suggestion)

The STCP keep-alive interval timer should be configurable by external

variable.

stcp-1322

The default interval for sending the 1st probe, if keep-alive option is

chosen, should not be less than two hours.

stcp-1729

The new features flag is not not set on accepted sockets. This means that

setting the tcp_keepalive_keep_tries$ counter to control the number of

keep alive probes before a disconnect does not have any effect.

stcp-2349

When STCP tears down its side of a connection because the keep alive

probes have not been responded to it should send an RST packet just in

case it’s the other side's ACKs that are not getting through.
stcp-2367

The number of actual keepalive packets sent is 1 less than the number set

by the keepalive_tries parameter.

History of document
Version
Date

Notes

1

August 29, 2003
initial release
2
October 20, 2003
incorrectly stated that the dump_onetcb request displays the keep* values in seconds. This is not correct, you have to divide the values by 12.5 to get seconds. (Thanks to Glen Cogswell for pointing this out)

Reformatted the margins to make it easier to read

3
May 2, 2007
added information about stcp-2349, stcp-2367 and the use of list_stcp_params and set_stcp_param

