Dead Gateway Detection on VOS

Having a fault tolerant server doesn’t do you a lot of good if it can’t reach your remote clients because the network is down. To address that problem many sites have multiple network interfaces each on a different subnet. A failure in 1 subnet should not affect the other. However, there is still the problem of routing. If your default gateway, or the routes to your remote clients go through a router on the down subnet having the second subnet doesn’t help. This article will discuss a solution to this routing problem for VOS.

What are things that don’t work or work under only some conditions?

· Multiple routes on different interfaces

Many sites have tried to solve this problem by setting up routes to the same destinations (or the default route) on each interface. This will not work. Under STCP you just can’t do it, the second route replaces the first.

route add 11.0.0.0 164.152.77.2 255.0.0.0

ready 15:27:42

route print

Default Gateway: 164.152.76.1

Network Address Gateway Address Subnet Mask Redirect Life

11.0.0.0 164.152.77.2 255.0.0.0

ready 15:27:46

route add 11.0.0.0 172.16.1.107 255.0.0.0

ready 15:28:00

route print

Default Gateway: 164.152.76.1

Network Address Gateway Address Subnet Mask Redirect Life

11.0.0.0 172.16.1.107 255.0.0.0

ready 15:28:03

Under TCP_OS you can add two routes to a single destination but only one will be used. If the interface that that route is using fails then the other route will take over but it has to be an interface failure, if the router fails we will continue to use the route, even though we are not getting any responses from the router.

route add 11.0.0.0 164.152.77.2 1

add net 11.0.0.0: gateway 164.152.77.2

ready 15:26:06

netstat -nr

Routing tables

Destination Gateway Flags Refs Use Interface

127.0.0.1 127.0.0.1 UH 0 0 #enet.14.4

default 164.152.76.1 UG 1 532 #enet.14.4

172.16.1 172.16.1.253 U 0 5 #enet.14.5

11 164.152.77.2 UG 0 0 #enet.14.4

164.152.76 164.152.77.206 U 8 3617 #enet.14.4

ready 15:26:11

route add 11.0.0.0 172.16.1.107 3

add net 11.0.0.0: gateway 172.16.1.107

ready 15:26:23

netstat -nr

Routing tables

Destination Gateway Flags Refs Use Interface

127.0.0.1 127.0.0.1 UH 0 0 #enet.14.4

default 164.152.76.1 UG 1 532 #enet.14.4

172.16.1 172.16.1.253 U 0 5 #enet.14.5

11 172.16.1.107 UG 0 0 #enet.14.5

11 164.152.77.2 UG 0 0 #enet.14.4

164.152.76 164.152.77.206 U 8 3675 #enet.14.4

ready 15:26:26

· Using standard routing protocols

Routing protocols are designed to handle just this problem; the two most common are RIP and OSPF. Unfortunately, TCP_OS does not support either of these protocols. STCP does support OSPF but OSPF is a complex protocol requiring the support of the network administrator to set up. It is not unusual for the network administrator to decide that your host (as opposed to his routers) should not be running OSPF. If you do have a cooperative network administrator check the VOS STREAMS TCP/IP Administrator's Guide (R419-03) for OSPF documentation.

· ICMP Redirect messages

Both TCP_OS and STCP support the ICMP redirect message. This is a message that lets a router tell a host that there is a better router to use. This will work as long as the problem is with the original router’s link and not the router itself (if the router crashes, it can’t send the message). It also assumes that the problem is local; if the problem is with a router somewhere in the network then redirect messages may not be sent. There are also some security issues involving redirect messages. There is no authentication mechanism in ICMP so someone can send a bogus redirect message and disrupt or possibly hijack your connections. Microsoft in Security Considerations for Network Attacks recommends disabling ICMP redirect support. You can’t do that in TCP_OS but in STCP there is a tuning parameter listen_to_redirects. Setting it to 0 will cause STCP to ignore redirect messages, the default is 1 (accept redirect messages).

as: d listen_to_redirects

FEA9D9D0 0 00000001 |.... |

as: set_longword listen_to_redirects 0

addr from to

FEA9D9D0 00000001 00000000

as:

The other limitation with ICMP redirect messages is that both routers have to be on the same subnet. If instead of the router failing it is the switch that the module uses to connect to the subnet redirect messages will not help. They also will not help if the subnet is brought down by a broadcast storm,

· Manually change the route when there is a problem

When a problem is noticed, i.e. someone complains you can manually change the route by deleting the route using the router on the failed network and adding a route to the same destination using a router on your other network. This of course works under all conditions but the mean time to repair is typically longer than is desired.

None of these “solutions” is ideal (some of them are not really even viable). I have included them because they have all been tried and under some limited circumstances may work satisfactorily.

I do however, have a simple solution. Create a process that goes out and tests the network, if it finds a failure delete the current route and add the alternate. The difference between this and the manual approach is that it actively tests the network instead of waiting for a complaint and it does not require any manual intervention.

The following command_macros implement this process. Since STCP and TCP_OS have different command syntax there are two macros, one for each stack.

Before presenting the macros I’ll go over the procedure, which is the same for both.

1) Ping something. What to ping is an important decision. Pinging the local router interface is safe as long as you have only 1 interface on the subnet. If you have more than 1 interface there are some interesting effects that can happen under TCP_OS (see http://noahdavids.org/stratasphere/multihome.doc). With STCP the second interface is just not used so it not as big a deal. You also need to make sure that the local router will respond to pings. Many routers are configured to ignore pings or respond to only 1 out of “so-many”. If you have more than 1 interface on the same subnet or your router ignores pings or you just want to make sure that there are no network problems beyond the router, you can ping your remote client. But be careful, if someone turns off the client we will change routes when we don’t need to. A better approach might be to ping the local side of the remote client’s router – assuming that the router will respond to pings or better yet some server (something that will not be turned off or go down) that is on the remote client’s subnet. By the way this is the probe_target in the macro, it should be an IP address not a host name since it will be compared to an IP address later on.

2) Assuming the ping works set the current_lost value to 0 and go to sleep for the probe_time period. This is in seconds. Current_lost represents the number of pings that have failed in a row. What to set probe_time to will depend on your environment and how sensitive you are to failures. I picked 5 seconds. You have to remember however that when a ping fails it will take a relatively long time compared with a successful ping. The log that is created will show you the actual time when the ping fails so you can adjust the probe_time accordingly.

3) If the ping fails increment current_lost. If it is equal to max_lost then initiate the routing change. Typically you have to allow some packet lost so setting max_lost equal to 1 is not correct. What to set it to depends on how sensitive you are to failures and how lossy your network is. I’ve selected 3 because I have seen 2 pings in a row fail but not 3 on our “properly” operating network.

4) Before changing the route you have to figure out which route is currently active. This is done in three steps.

a. Dump the routing table to a file

b. Display the routing table matching on router1 and dump that to a file

c. Display that file matching on the dest_net and dump that to a file

d. If that final file is not empty then we will assume that there is a route to dest_net using router1, else we will assume that there is a route to dest_net using router2.

5) For TCP_OS changing the routes is a route add of the new route followed by a route delete of the old route. This is done so that there is always a route available. In STCP it is just a route add which replaces the existing route.

6) Set current_lost back to 0 and go to sleep.

7) Whenever a ping fails or the routes are changed a message with the date and time is printed on the terminal screen. If the verbose argument is 1 then whenever a ping succeeds a message is also written to the screen. Under normal conditions I expect that the macro will be run with verbose = 0.

Most of the time the macro has set default_output to one of the junk files. If you run the macro interactively and break out of it you will probably have to run the detach_default_output command to get your output back. Also the macro turns off the ready prompt so you will need to turn it back on with set_ready –format medium command (or whatever format you want).

tcpos_deadgw.cm

& This software is provided on an "AS IS" basis, WITHOUT ANY WARRANTY

& OR ANY SUPPORT OF ANY KIND. The AUTHOR SPECIFICALLY DISCLAIMS ANY

& IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR

& PURPOSE. This disclaimer applies, despite any verbal representations

& of any kind provided by the author or anyone else.

&begin_parameters

 probe_target probe_target:string,req

 probe_time probe_time:number=5

 max_lost max_lost:number=3

 dest_net routing_destination_network/host:string,req

 router1 router1:string,req

 router2 router2:string,req

 verbose verbose:number=1

&end_parameters

&

& probe_target -- IP address (no names) that will be pinged

& probe_time -- The number of seconds between iterations

& max_lost -- how many pings must be lost in a row before changing routes

& dest_net -- IP address (no names, but may be default) that appears in

& the destination column of the routing table for the route

& that is used to get to probe_target

& router1 -- IP address (no names) of one of the routers that can be

& used to get to probe_target

& router2 -- IP address (no names) of one of the routers that can be

& used to get to probe_target

& verbose -- if 1 outputs message for every successful ping as well as

& failures and route changes. If 0 only outputs messages for

& -- ping failures and route changes

&

&echo no_input_lines no_macro_lines no_command_lines

!set_ready -format off

&

display_line probe_target = &probe_target&

display_line probe_time = &probe_time&

display_line max_lost = &max_lost&

display_line routing_destination_network/host = &dest_net&

display_line router1 = &router1&

display_line router2 = &router2&

display_line verbose = &verbose&

display_line

&

&set current_lost 0

&

&label again

attach_default_output (current_dir)>tcpos_deadgw.junk

!(master_disk)>system>tcp_os>command_library>ping &probe_target& 1

&if (command_status) = 1

&then &do

 &set current_lost ¤t_lost& + 1

 detach_default_output

! display_line (date)_(time): probe to &probe_target& has failed, ¤t_lost&/&max_lost&

 attach_default_output (current_dir)>tcpos_deadgw.junk

 &if ¤t_lost& = &max_lost&

 &then &do /* if (¤t_lost& = &max_lost&) */

 detach_default_output

 attach_default_output (current_dir)>tcpos_deadgw.junk

! (master_disk)>system>tcp_os>command_library>netstat -numeric -routing

 detach_default_output

 attach_default_output (current_dir)>tcpos_deadgw.junk1

! display (current_dir)>tcpos_deadgw.junk -match &router1&

 detach_default_output

 attach_default_output (current_dir)>tcpos_deadgw.junk2

! display (current_dir)>tcpos_deadgw.junk1 -match &dest_net&

 detach_default_output

! display_line (date)_(time): changing routes

 &if (length (contents (current_dir)>tcpos_deadgw.junk2)) > 0

 &then &do

! display_line (date)_(time): route add &dest_net& &router2& 1

! (master_disk)>system>tcp_os>command_library>route add &dest_net& &router2& 1

! display_line (date)_(time): route delete &dest_net& &router1&

! (master_disk)>system>tcp_os>command_library>route delete &dest_net& &router1&

 attach_default_output (current_dir)>tcpos_deadgw.junk

 &end

 &else &do

! display_line (date)_(time): route add &dest_net& &router1& 1

! (master_disk)>system>tcp_os>command_library>route add &dest_net& &router1& 1

! display_line (date)_(time): route delete &dest_net& &router2&

! (master_disk)>system>tcp_os>command_library>route delete &dest_net& &router2&

 attach_default_output (current_dir)>tcpos_deadgw.junk

 &end

 &set current_lost 0

 &end /* if (¤t_lost& = &max_lost&) */

&end /* if (command_status = 1) */

&else &do /* if (command_status = 1) else */

 &if &verbose& = 1

 &then &do

 detach_default_output

! display_line (date)_(time): probe to &probe_target& has succeeded

 attach_default_output (current_dir)>tcpos_deadgw.junk

 &end

 &set current_lost 0

&end /* if (command_status = 1) else */

!sleep -seconds &probe_time&

detach_default_output

&goto again

&

&

& ==

& History

& Version Date Notes

& 0.1 July 11, 2003 initial release

& 0.2 Novembet 26, 2010 Added disclaimer

The STCP route command requires a subnet mask argument so the stcp version of this command macro has an extra argument dest_mask. If the dest_net value is default then a subnet mask is really meaningless – but you need to provide one anyway because all the arguments are positional.

stcp_deadgw.cm

& This software is provided on an "AS IS" basis, WITHOUT ANY WARRANTY

& OR ANY SUPPORT OF ANY KIND. The AUTHOR SPECIFICALLY DISCLAIMS ANY

& IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR

& PURPOSE. This disclaimer applies, despite any verbal representations

& of any kind provided by the author or anyone else.

&begin_parameters

 probe_target probe_target:string,req

 probe_time probe_time:number=5

 max_lost max_lost:number=3

 dest_net routing_destination_network/host:string,req

 dest_mask routing_destination_mask:string,req

 router1 router1:string,req

 router2 router2:string,req

 verbose verbose:number=1

&end_parameters

&

& probe_target -- IP address (no names) that will be pinged

& probe_time -- The number of seconds between iterations

& max_lost -- how many pings must be lost in a row before changing routes

& dest_net -- IP address (no names, but may be default) that appears in

& the destination column of the routing table for the route

& that is used to get to probe_target

& dest_mask -- subnet mask used to define the dest_net address. If dest_net

& is default this can be anything as long as it is there

& remember that all these arguments are positional

& router1 -- IP address (no names) of one of the routers that can be

& used to get to probe_target

& router2 -- IP address (no names) of one of the routers that can be

& used to get to probe_target

& verbose -- if 1 outputs message for every successful ping as well as

& failures and route changes. If 0 only outputs messages for

& -- ping failures and route changes

&

&echo no_input_lines no_macro_lines no_command_lines

!set_ready -format off

&

&if &dest_net& = 'default'

 &then &set_string dest_mask -default_gateway

&

display_line probe_target = &probe_target&

display_line probe_time = &probe_time&

display_line max_lost = &max_lost&

display_line routing_destination_network/host = &dest_net&

display_line routing_destination_mask = &dest_mask&

display_line router1 = &router1&

display_line router2 = &router2&

display_line verbose = &verbose&

display_line

&

&set current_lost 0

&

&label again

attach_default_output (current_dir)>stcp_deadgw.junk

!(master_disk)>system>stcp>command_library>ping &probe_target& -count 1

&if (command_status) = 1

&then &do

 &set current_lost ¤t_lost& + 1

 detach_default_output

! display_line (date)_(time): probe to &probe_target& has failed, ¤t_lost&/&max_lost&

 attach_default_output (current_dir)>stcp_deadgw.junk

 &if ¤t_lost& = &max_lost&

 &then &do /* if (¤t_lost& = &max_lost&) */

 detach_default_output

 attach_default_output (current_dir)>stcp_deadgw.junk

! (master_disk)>system>stcp>command_library>netstat -numeric -routing

 detach_default_output

 attach_default_output (current_dir)>stcp_deadgw.junk1

! display (current_dir)>stcp_deadgw.junk -match &router1&

 detach_default_output

 attach_default_output (current_dir)>stcp_deadgw.junk2

! display (current_dir)>stcp_deadgw.junk1 -match &dest_net&

 detach_default_output

! display_line (date)_(time): changing routes

 &if (length (contents (current_dir)>stcp_deadgw.junk2)) > 0

 &then &do

! display_line (date)_(time): route add &dest_net& &router2& &dest_mask&

! (master_disk)>system>stcp>command_library>route add &dest_net& &router2& &dest_mask&

 attach_default_output (current_dir)>stcp_deadgw.junk

 &end

 &else &do

! display_line (date)_(time): route add &dest_net& &router1& &dest_mask&

! (master_disk)>system>stcp>command_library>route add &dest_net& &router1& &dest_mask&

 attach_default_output (current_dir)>stcp_deadgw.junk

 &end

 &set current_lost 0

 &end /* if (¤t_lost& = &max_lost&) */

&end /* if (command_status = 1) */

&else &do /* if (command_status = 1) else */

 &if &verbose& = 1

 &then &do

 detach_default_output

! display_line (date)_(time): probe to &probe_target& has succeeded

 attach_default_output (current_dir)>stcp_deadgw.junk

 &end

 &set current_lost 0

&end /* if (command_status = 1) else */

!sleep -seconds &probe_time&

detach_default_output

&goto again

&

&

& ==

& History

& Version Date Notes

& 0.1 July 11, 2003 initial release

& 0.2 November 26, 2010 Added disclaimer

The best way to run these macros is in a started_process. The following command macro can be used to start either macro. Just indicate wither stcp ot tcp_os with the stack argument and then supply all the appropriate arguments for the macro that will be run.

start_deadgw.cm

& This software is provided on an "AS IS" basis, WITHOUT ANY WARRANTY

& OR ANY SUPPORT OF ANY KIND. The AUTHOR SPECIFICALLY DISCLAIMS ANY

& IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR

& PURPOSE. This disclaimer applies, despite any verbal representations

& of any kind provided by the author or anyone else.

&begin_parameters

 stack option(-stack),string,allow(tcp_os,stcp)

 rest tcpos/stcp_deadgw_args:unclaimed

&end_parameters

&

&if &stack& = stcp

 &then &do

 &if (exists stcp_deadgw.out)

 &then !rename stcp_deadgw.out stcp_deadgw.(date).(time)

 !create_file stcp_deadgw.out

 !set_implicit_locking stcp_deadgw.out

 !start_process (string stcp_deadgw.cm &rest&) -process_name stcp_deadgw -output_path stcp_deadgw.out -privileged

 &end

&else &do

 &if (exists tcpos_deadgw.out)

 &then !rename tcpos_deadgw.out tcpos_deadgw.(date).(time)

 !create_file tcpos_deadgw.out

 !set_implicit_locking tcpos_deadgw.out

 !start_process (string tcpos_deadgw.cm &rest&) -process_name tcpos_deadgw -output_path tcpos_deadgw.out -privileged

 &end

&

&

& ==

& History

& Version Date Notes

& 0.1 July 11, 2003 initial release

& 0.2 November 26, 2010 Added disclaimer

Given the command:

start_deadgw -stack tcp_os 134.111.201.80 5 3 default 164.152.77.1 164.152.77.40 1

This is the tcpos_deadgw.out file. In this case neither specified routers will work correctly. It was done so you could see how it will cycle between both routers.

Noah_Davids.CAC logged in on %phx_cac_j14#m14 at 03-07-10 11:10:57 mst.

tcpos_deadgw.cm 134.111.201.80 5 3 default 164.152.77.1 164.152.77.40 1

probe_target = 134.111.201.80

probe_time = 5

max_lost = 3

routing_destination_network/host = default

router1 = 164.152.77.1

router2 = 164.152.77.40

verbose = 1

03-07-10_11:11:07: probe to 134.111.201.80 has failed, 1/3

03-07-10_11:11:22: probe to 134.111.201.80 has failed, 2/3

03-07-10_11:11:38: probe to 134.111.201.80 has failed, 3/3

03-07-10_11:11:38: changing routes

03-07-10_11:11:38: route delete default 164.152.77.1

delete net default: gateway 164.152.77.1

03-07-10_11:11:39: route add default 164.152.77.40 1

add net default: gateway 164.152.77.40

03-07-10_11:11:55: probe to 134.111.201.80 has failed, 1/3

03-07-10_11:12:10: probe to 134.111.201.80 has failed, 2/3

03-07-10_11:12:25: probe to 134.111.201.80 has failed, 3/3

03-07-10_11:12:26: changing routes

03-07-10_11:12:26: route delete default 164.152.77.40

delete net default: gateway 164.152.77.40

03-07-10_11:12:26: route add default 164.152.77.1 1

add net default: gateway 164.152.77.1

03-07-10_11:12:42: probe to 134.111.201.80 has failed, 1/3

03-07-10_11:12:57: probe to 134.111.201.80 has failed, 2/3

. . .

And an STCP example

start_deadgw -stack stcp 134.111.201.80 5 3 default * 164.152.77.1 164.152.77.40 1

Noah_Davids.CAC logged in on %phx_cac_j14#m14 at 03-07-10 11:37:22 mst.

stcp_deadgw.cm 134.111.201.80 5 3 default * 164.152.77.1 164.152.77.40 1

probe_target = 134.111.201.80

probe_time = 5

max_lost = 3

routing_destination_network/host = default

routing_destination_mask = -default_gateway

router1 = 164.152.77.1

router2 = 164.152.77.40

verbose = 1

ping: No reply. Time Out !!

03-07-10_11:37:38: probe to 134.111.201.80 has failed, 1/3

ping: No reply. Time Out !!

03-07-10_11:37:59: probe to 134.111.201.80 has failed, 2/3

ping: No reply. Time Out !!

03-07-10_11:38:19: probe to 134.111.201.80 has failed, 3/3

03-07-10_11:38:20: changing routes

03-07-10_11:38:20: route delete default 164.152.77.1 -default_gateway

03-07-10_11:38:21: route add default 164.152.77.40 -default_gateway

ping: No reply. Time Out !!

03-07-10_11:38:42: probe to 134.111.201.80 has failed, 1/3

ping: No reply. Time Out !!

03-07-10_11:39:03: probe to 134.111.201.80 has failed, 2/3

ping: No reply. Time Out !!

03-07-10_11:39:23: probe to 134.111.201.80 has failed, 3/3

03-07-10_11:39:24: changing routes

03-07-10_11:39:24: route delete default 164.152.77.40 -default_gateway

03-07-10_11:39:25: route add default 164.152.77.1 -default_gateway

ping: No reply. Time Out !!

03-07-10_11:39:46: probe to 134.111.201.80 has failed, 1/3

ping: No reply. Time Out !!

03-07-10_11:40:07: probe to 134.111.201.80 has failed, 2/3

. . .

History of document:

Version
Date

Notes

1

July 31, 2003

initial release

1.1

November 26, 2010
Added disclaimers to the macros

