Dead Gateway Detection for ftServer

Having a fault tolerant server doesn’t do you a lot of good if your remote clients can’t reach the server because the network is down. To address that problem many sites have multiple network interfaces each on a different subnet. A failure in 1 subnet should not affect the other. However, there is still the problem of routing. If your default gateway, or the routes to your remote clients go through a router on the down subnet having the second subnet doesn’t help. This article will discuss solutions to this routing problem for Windows on the ftServer platform.

The first thing to point out is that Windows 2000 has a dead gateway detection mechanism that is on by default. However, it is not perfect. Details on how it works can be found in knowledge base article 171564. It says NT but works for Windows 2000 as well. Briefly, when a TCP connection retransmits a packet more than half of the TcpMaxDataRetransmissions times and doesn’t get a response it tries the next default gateway in its list. When over 25% of the current connections have switched their gateway the default gateway for the entire system is changed to the new gateway. All the routers are tried in sequence. When the last router is tried the system cycles back to the first router.

The question that comes to mind is how does the system create its list of default gateways. Well, it can always be configured statically but that requires knowing the IP addresses of all the routers and reconfiguring all the hosts if that list changes. Another approach is to use the Internet Router Discovery Protocol (IRDP). IRDP is described in RFC 1256 and is based on ICMP message types 9 and 10. It allows a host to send a query to all routers on a subnet and allows those routers to respond back to the host. Documentation of Windows 2000 implementation of IRDP can be found in the Unicast IP Routing document. Perhaps the biggest problem is that the routers only advertise their existence not their routes. If a non-optimum router is selected as the default gateway you may end up with lots of hosts routes created by redirect messages or just lower throughput caused by non-optimum routes. IRDP is disabled by default. To turn it on you need to set the registry variable HKEY_LOCAL_Machine\System\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\interface_name\PerformRouterDiscovery to 1. Take a look at KB article 269734. The document Security Considerations for Network Attacks recommends that IRDP be left disabled for security reasons. Since there is no authentication of router responses it is possible that a bogus router can be inserted into you’re your routing table and disrupt or hijack communication.

There are a few limitations in the dead gateway detection mechanism. First it works only for the default gateway, second, it works only for TCP connections, ping (or any ICMP traffic) and UDP do not trigger a change. Finally, Security Considerations for Network Attacks recommends that Dead Gateway Detection be turned off (it’s on by default). Frankly, I am not sure why, assuming that the list of gateways is trustworthy (I guess this means that you are not using IRDP). Dead gateway detection is controlled via the registry value HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\EnableDeadGWDetect. Its default value is 1 (on). To turn it off set the value to 0.

What do you do if the gateway that you want redundancy on is not the default gateway? Or you want (have) to follow the suggestion in Security Considerations for Network Attacks and turn dead gateway detection off? Well Windows 2000 supports both RIP and OSPF. These two routing protocols will allow the system to listen to the routers on the network and update its routing table based on the routes that the routers are using. If router A stops advertising a route to network N and router B starts advertising a route to network N the system will adjust its routing table to send packets destined for network N to router B instead of A.

The trick is to remember to set RIP up so that it does not advertise routes, it only listens (silent RIP). If you advertise routes then other routers may start to use you and that is probably not what you want to have happening. Take a look at Microsoft’s Windows 2000 Sever Documentation “Configure RIP for IP” for information on RIP and Configure OSPF for information on OSPF.

Assuming that you do not want to/can’t use the built in dead gateway detection or one of the routing protocols you have 1 more option that is built into Windows, ICMP redirect messages. ICMP redirect messages are used by a router to tell a host that there is another router on the same subnet that is a better choice for the packet that it was just sent. A host that is listening for ICMP redirect messages will update its routing table so that the next time it sends a packet to that host it uses the new router. Redirect messages have several limitations. First, both routers have to be on the same subnet so this would be only useful if the two routers have different links to the target network and the link on the primary router fails. Second, if the router itself fails, i.e. crashes, redirect will not help because the router has to be up to send the redirect message. Third, if the problem is somewhere after the first router; that is it is the 4th router in the chain that has gone down, the first router may or may not send a redirect; it depends on the routing table of that router. Fourth (and finally) there is no authentication mechanism in ICMP so someone can send a bogus redirect message and disrupt or possibly hijack your connections. Microsoft in Security Considerations for Network Attacks recommends disabling ICMP redirect support. The registry value HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\EnableICMPRedirect is set to 1(enable) by default. To disable it you need to set the value to 0. Note that knowledge base article 293626. states that setting EnableICMPRedirect to 0 will not disable support for redirects until at Windows 2000 service pack 3. The problem is that the system is looking for the key EnableICMPRedirects (plural) instead of EnableICMPRedirect (singular)

OK so what do you do if you have a set of hosts that you must maintain a connection to and they do not use the default gateway and you can’t use a routing protocol because the network admins have decreed that only routers can use RIP or OSPF? Well you can manually change the route to those hosts when someone reports a problem or use the following script (figure 1) to actively probe the network and change routes if a problem is found. This is a Perl script, Microsoft Windows 2000 does not come with Perl but you can get it for free at a number of sites (try http://www.activestate.com/Products/ActivePerl/). The script is run from a command window. You can set it up to run in a BAT file (figure 2) that is started when the system is booted.

The script takes 8 arguments

· max_lost
How many pings must be lost in a row before changing routes

· probe_time
The number of seconds between iterations. Remember that a failure will also take

some time so actual recovery time will be longer than max_lost * probe_time.

Look at the actual time stamps for some failures to get an idea of the actual

timeout

· probe_target
IP address (no names) that will be pinged

· dest_net
IP address (no names, but may be default) that appears in the destination column

of the routing table for the route that is used to get to probe_target

· dest_mask
Subnet mask used to define the dest_net address. If dest_net is default this can be

anything as long as it is there remember that all these arguments are positional

· router1
IP address (no names) of one of the routers that can be used to get to probe_target

· router2
IP address (no names) of one of the routers that can be used to get to probe_target

· verbose
If 1 outputs message for every successful ping as well as failures and route

changes. If 0 only outputs messages for ping failures and route changes

I am certainly not an expert in Perl feel free to send me corrections or suggestions.

Figure 1 dead-gateway Perl script: dgw.pl

This software is provided on an "AS IS" basis, WITHOUT ANY WARRANTY OR ANY

SUPPORT OF ANY KIND. The AUTHOR SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. This disclaimer

applies, despite any verbal representations of any kind provided by the

author or anyone else.

$max_lost = @ARGV [0];

$probe_time = @ARGV [1];

$host = @ARGV [2];

$dest_net = @ARGV [3];

$dest_mask = @ARGV [4];

$router1 = @ARGV [5];

$router2 = @ARGV [6];

$verbose = @ARGV [7];

print "dgw " . $max_lost . " " . $probe_time . " " . $host . " " . $dest_net . " " . $dest_mask . " " . $router1 . " " . $router2 . " " . $verbose . "\n\n\n";

@ping_command = ("ping", $host, "-n", "1", ">", "junk");

@route_print_command = ("route", "print", ">", "junk");

@del_router1_command = ("route", "delete", $dest_net, "mask", $dest_mask, $router1);

@del_router2_command = ("route", "delete", $dest_net, "mask", $dest_mask, $router2);

@add_router1_command = ("route", "add", $dest_net, "mask", $dest_mask, $router1);

@add_router2_command = ("route", "add", $dest_net, "mask", $dest_mask, $router2);

$current_lost = 0;

$JUNK_FILE = "junk";

while (1)

 {

 $r = system (@ping_command);

 if ($r == 256)

 {

 $current_lost = $current_lost + 1;

 $datetime = localtime ();

 print "$datetime : probe to $host has failed $current_lost/$max_lost\n";

 if ($current_lost == $max_lost)

 {

 $datetime = localtime ();

 print "$datetime : changing routes\n";

 $r = system (@route_print_command);

 open (JUNK_FILE);

 @array = <JUNK_FILE>;

 close (JUNK_FILE);

 $found_router1 = 0;

 foreach (@array)

 {

 if (/\s*$dest_net\s*$dest_mask\s*$router1/)

 {

 $found_router1 = 1;

 }

 }

 if ($found_router1)

 {

 foreach (@add_router2_command)

 {

 print $_ . " ";

 }

 print "\n";

 system (@add_router2_command);

 foreach (@del_router1_command)

 {

 print $_ . " ";

 }

 print "\n";

 system (@del_router1_command);

 }

 else

 {

 foreach (@add_router1_command)

 {

 print $_ . " ";

 }

 print "\n";

 system (@add_router1_command);

 foreach (@del_router2_command)

 {

 print $_ . " ";

 }

 print "\n";

 system (@del_router2_command);

 }

 $current_lost = 0;

 } # if ($current_lost == $max_lost)

 } # if ($r = 256)

 else

 {

 if ($verbose == 1)

 {

 $datetime = localtime ();

 print "$datetime : probe to $host has succeeded\n";

 }

 $current_lost = 0;

 }

 sleep $probe_time;

 } # while (1)

#

#

==

History

Version Date Notes

0.1 July 11, 2003 initial release

0.2 November 26, 2010 Added disclaimer

Figure 2 BAT file to execute the above Perl script.

perl dgw.pl 3 5 68.2.16.30 0.0.0.0 0.0.0.0 192.168.1.1 192.168.1.200 0

History of document:

Version
Date

Notes

1

July 31, 2003

initial release

1.1

November 26, 2010
Added disclaimer to the code

