Writing a Posix inetd application for STCP
The POSIX version of inetd has greatly simplified writing an application that is launched by inetd. You no longer need to use the stcp_spawn_child_process function. In fact you no longer need to create or manage sockets. Applications that are started by the POSIX version of inetd can read and write to stdin and stdout. The following is a simple example:

#include <errno.h>

void write_syslog(char* msg)

{

 char_varying(256) v_msg;

 char_varying(32) curr_module = "";

 short error_code;

 char* name = "echo_server:";

 strcpy_vstr_nstr(&v_msg, name);

 strcat_vstr_nstr(&v_msg, msg);

 s$log_system_message(&v_msg, &curr_module, &error_code);

}

main (argc, argv)

int argc;

char *argv [];

{

int n;

char buffer [80];

printf ("Number of arguments = %d\n", argc);

for (n = 0; n < argc; n++)

 {

 printf ("Argument [%d] = <%s>\n", n, argv [n]);

 }

printf ("Beginning echo ...\n\n");

n = getchar (); /* read from stdin */

if (n < 0)

 {

 sprintf (buffer, "Error %d doing first recv", errno);

 write_syslog (buffer);

 }

while (n > -1)

 {

 putchar (n);

 n = getchar ();

 }

}
This is a simple echo routine, whatever it reads from stdin it writes to stdout. You’ll notice that it also writes its arguments to stdout. It is certainly not necessary for your application to do this; you’ll find out later why mine does.
To run properly you will need to include >system>posix_object_library in your object_library search paths – before the >system>c_object_library object library but after all the STCP object libraries before you bind your application,
You also of course need to modify the inetd.conf and services files.

d inetd.conf -match echo_server

%phx_cac_j14#m14_mas>system.14.6.0>stcp>inetd.conf 03-09-08 16:12:40 mst

echo_server stream tcp nowait Noah_Davids %phx_cac_j14#m14_d02>CAC>Noah_Davids>e

+cho_server 9999 arg2

d services -match echo_server

%phx_cac_j14#m14_mas>system.14.6.0>stcp>services 03-09-08 16:14:37 mst

echo_server 9999/tcp # noah's test
The simplest thing to do at this point is to stop stcp_inetd with a stop_process command and then restart it with the >system>stcp>start_inetd command macro. To run the macro you need to be running as root. The other thing you can do is send the stcp_inetd a hangup signal which forces it to reread the inetd.conf file. To do that you first need to get its process id:
list_users * -process stcp_inetd -process_id

550183D3x root.root (stcp_inetd)

ready 16:12:50
And then use the kill command:
kill -s HUP 550183D3x

ready 16:13:06

To do it that way you do not have to be root.

Now I want to cover the argument processing. The echo_server program can be run from the command line and when you do you get the following list of argument.

echo_server 9999 arg2

Number of arguments = 3

Argument [0] = <echo_server>

Argument [1] = <9999>

Argument [2] = <arg2>

Beginning echo ...

However, when started by inetd you get

Number of arguments = 2

Argument [0] = <9999>

Argument [1] = <arg2>

Beginning echo ...

You’ll notice that the command name is missing from the argument list. This is not a bug but is the standard way things work. In order to make your argument processing come out the same you need to add another argument to the inetd.conf line. Instead of
echo_server stream tcp nowait Noah_Davids %phx_cac_j14#m14_d02>CAC>Noah_Davids>e

+cho_server 9999 arg2
It needs to be

echo_server stream tcp nowait Noah_Davids %phx_cac_j14#m14_d02>CAC>Noah_Davids>e

+cho_server echo_server 9999 arg2

If you look carefully at inetd,conf files under various Unix systems you’ll see that they also include the command name after the command path.

One final thing to consider; while it is not necessary to create sockets and open or accept new connections from a command started by inetd you can do it – with one restriction. You cannot listen on the same port number that the inetd was listening on to start the command. Well you can create the socket, bind it to the port and call listen but inetd is still listening to the port and within STCP the first listening socket bound to a port will always get the connection so it won’t do you any good. You can listen on different ports without any problems. However, I suspect that most of the time if you want your application to listen to a specific port for multiple connections it will be better not to use inetd. If the application will only deal with 1 connection that inetd is ideal.
Revision History

Version 0
03-09-10

