Pinging through a firewall on VOS

Security is a wonderful thing but sometimes it gets in the way. Take the case of communication problems between a VOS system and some other ‘X’ system. One of the first things I do is to ping ‘X’ from the VOS system. Are all the pings getting through? Is the response time within reason? If there is a firewall blocking the ping packet or its response then ping becomes worthless as a tool. This has been happening to me more and more over the last year or so. This article will describe a replacement tool that works when ping doesn’t (note this tool uses STCP not TCP_OS).

I call the tool tping, short for TCP ping. Like ping it reports the response time from the client for each “tping” as well as minimum, average and maximum response times. It also reports the percentage of packets that do not get a response. It works by making a TCP connection instead of using ICMP as ping does. As long as system ‘X’ is listening on some port and packets to that port are allowed through by the firewall then this tool will work.

Once started it continuously sends out connection requests (tpings). In order to be polite and not be considered some kind of denial of service attack the minimum time between tpings is 1 second. Also once the connection is made it is closed as soon as possible so client resources are freed as soon as possible.

Arguments

The tping command will display a usage message if the incorrect number of arguments is given.

tping

Usage:

 tping host port ping-time

 ping-time is in seconds

Written by Noah Davids (noah.davids@stratus.com) version 1.2 2004-05-19

Figure 1 – the tping usage message

There are 3 arguments

Target Host

This is either the IP address or the host name of the target system. A host name is resolved into an IP address via the standard host name resolution configured for the system. The command will report the IP address of the resolved host name.

Port Number

This is the target port number on the target system. Service names are NOT allowed, this must be a numeric argument.

Time

This is a time in seconds. It is used in two different ways. The first way is the number of seconds to wait for a connection to be established. If a connection is not established within this time a timeout is declared. The second way is the delay between sending consecutive tpings – sort of. If a connection is established we will wait Time seconds before sending another tping. This means that if the connections are completed a nanosecond before the timeout the time between consecutive tpings will actually be 2 times the time value (minus the nanosecond). On the other hand, if the tping times out we do not wait again.

Releases supported

This tool works best on release 14.7 and later. These releases support both non-blocking connects (stcp-1178) and the SO_LINGER socket option (stcp-1789).

Starting in release 14.6.0aq with the fix for stcp-1178 STCP supports non-blocking connects. Before this release, connection attempts would block in the kernel even if the socket is in non-blocking mode. Since it takes, at a minimum, several minutes to time out a connection request the time between consecutive tpings will be a lot longer than expected when a connection cannot be made.

With SO_LINGER support in VOS 14.7 the connections are closed with a reset packet instead of a FIN packet. The reset allows for a faster cleanup of socket resources on both system X and the VOS system.

The Output

The tping output consists of 3 columns. The first column is a count of the successful tpings, the total number of tpings sent and the percentage of successes. The second column consists of the minimum, average, and maximum connection times. The time taken when a tping times out is not included in the calculations for the minimum/average/maximum times. The third column indicates if the tping made a connection or timed out and how long it took.

At the start of the output and after every 22 tpings 2 or 3 header lines are output. The first is an echo of the command line that started tping. The second is the IP address the target host name resolved to. This is only output if a host name and not an IP address was used (note the difference between figures 1 and 2). The final header line is the column headings. I do this so that during a long run I can be reminded of what host and port I am tpinging.

tping www.microsoft.com 80 1

www.microsoft.com resolved to 207.46.156.220

Success/Tries=Percent min/average/max success times

1/1=100.000% 42.725/42.725/42.725 Connection in 42.725 ms

2/2=100.000% 41.718/42.222/42.725 Connection in 41.718 ms

3/3=100.000% 41.566/42.003/42.725 Connection in 41.566 ms

4/4=100.000% 41.566/45.228/54.902 Connection in 54.902 ms

5/5=100.000% 41.566/44.517/54.902 Connection in 41.672 ms

6/6=100.000% 41.566/45.106/54.902 Connection in 48.051 ms

7/7=100.000% 41.550/44.598/54.902 Connection in 41.550 ms

8/8=100.000% 41.550/44.278/54.902 Connection in 42.039 ms

9/9=100.000% 41.550/44.017/54.902 Connection in 41.932 ms

10/10=100.000% 41.550/43.812/54.902 Connection in 41.962 ms

11/11=100.000% 41.550/43.666/54.902 Connection in 42.206 ms

12/12=100.000% 41.550/43.530/54.902 Connection in 42.039 ms

13/13=100.000% 41.550/43.415/54.902 Connection in 42.039 ms

14/14=100.000% 41.550/43.811/54.902 Connection in 48.951 ms

15/15=100.000% 41.550/43.672/54.902 Connection in 41.733 ms

16/16=100.000% 41.550/43.583/54.902 Connection in 42.237 ms

17/17=100.000% 41.550/43.476/54.902 Connection in 41.764 ms

18/18=100.000% 41.550/43.410/54.902 Connection in 42.298 ms

Figure 2 – An example of tping with all tpings getting a response

tping 172.16.1.107 22 1

Success/Tries=Percent min/average/max success times

1/1=100.000% 8.713/8.713/8.713 Connection in 8.713 ms

2/2=100.000% 8.713/17.952/27.192 Connection in 27.192 ms

3/3=100.000% 0.519/12.141/27.192 Connection in 0.519 ms

4/4=100.000% 0.519/9.342/27.192 Connection in 0.946 ms

4/5=80.000% Timeout after 1000.656 ms

4/6=66.667% Timeout after 1000.320 ms

5/7=71.429% 0.519/7.666/27.192 Connection in 0.961 ms

6/8=75.000% 0.488/6.470/27.192 Connection in 0.488 ms

6/9=66.667% Timeout after 1000.427 ms

6/10=60.000% Timeout after 1000.244 ms

6/11=54.545% Timeout after 1000.244 ms

7/12=58.333% 0.488/5.676/27.192 Connection in 0.916 ms

8/13=61.538% 0.488/5.045/27.192 Connection in 0.626 ms

8/14=57.143% Timeout after 1000.519 ms

8/15=53.333% Timeout after 1000.320 ms

8/16=50.000% Timeout after 1000.443 ms

9/17=52.941% 0.488/4.593/27.192 Connection in 0.977 ms

10/18=55.556% 0.473/4.181/27.192 Connection in 0.473 ms

10/19=52.632% Timeout after 1000.519 ms

Figure 3 – example of timeouts

I have found that the times reported by tping and the times reported by ping can be substantially different. I suspect that this is due to the different processing that TCP and ICMP go through.

ping 164.152.77.12

Pinging host 164.152.77.12 : 164.152.77.12

ICMP Echo Reply:TTL 255 time = 62 ms

ICMP Echo Reply:TTL 255 time = 6 ms

ICMP Echo Reply:TTL 255 time = 8 ms

ICMP Echo Reply:TTL 255 time = 6 ms

Host 164.152.77.12 replied to all 4 of the 4 pings

ready 14:47:55

tping 164.152.77.12 21 1

tping 164.152.77.12 21 1

Success/Tries=Percent min/average/max success times

1/1=100.000% 9.705/9.705/9.705 Connection in 9.705 ms

2/2=100.000% 7.843/8.774/9.705 Connection in 7.843 ms

3/3=100.000% 7.843/9.252/10.208 Connection in 10.208 ms

4/4=100.000% 7.294/8.762/10.208 Connection in 7.294 ms

5/5=100.000% 7.294/8.698/10.208 Connection in 8.438 ms

Figure 4 - Example of ping and tping times

Good target port numbers

If you don’t know what port numbers to try you can try these. I can’t guarantee that they will work but chances are the host has them open, whether the firewall will permit them through or not is another question.

VOS

· 23 Telnet

· 21 FTP

· 3000 OSL intra-system (Making these connections doesn’t appear to hurt)

· 4000 OSL inter-system (Making these connections doesn’t appear to hurt)

ftServer/Windows

· 139 NetBIOS over TCP Session Service

· 21 FTP

· 80 HTTP

· 443 HTTPS

· 445 Microsoft-DS (used when doing file sharing over TCP without NetBIOS)

Ft Linux/Linux

· 23 Telnet (generic Linux only)

· 21 FTP (generic Linux only)

· 22 SSH

· 111 RPC Portmap

You can also do a netstat –na on the target system to see which ports are in LISTEN mode. This will work on just about any system except VOS/STCP. On VOS/STCP systems you need to do a “netstat –numeric –all_sockets”. The output format is pretty much the same on all systems.

[root@localhost root]# netstat -na

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 0.0.0.0:32768 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:941 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN

tcp 0 0 172.16.1.107:22 164.152.77.109:3678 ESTABLISHED

tcp 0 20 172.16.1.107:22 164.152.77.50:4495 ESTABLISHED

tcp 0 0 172.16.1.107:22 164.152.77.168:3441 ESTABLISHED

udp 0 0 0.0.0.0:32768 0.0.0.0:*

udp 0 0 0.0.0.0:788 0.0.0.0:*

udp 0 0 0.0.0.0:939 0.0.0.0:*

udp 0 0 0.0.0.0:111 0.0.0.0:*

Figure 5 – Example of netstat from an ft Linux system

The code (tping.c)

The following is a commented copy of the source, instructions for compiling and binding follow. Yes, I know that the font is small but this way most of the lines actually fit on the line. You should be able to just cut and past the source from this document into an editor window, save it and run the macro that follows the code to compile and bind.

/*

This software is provided on an "AS IS" basis, WITHOUT ANY WARRANTY OR ANY

SUPPORT OF ANY KIND. The AUTHOR SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. This disclaimer

applies, despite any verbal representations of any kind provided by the

author or anyone else.

*/

#define _POSIX_SOURCE

#include <sys/select.h>

#include <prototypes/inet_proto.h>

#include <fcntl.h>

#include <stdlib.h>

#include <string.h>

#include <c_utilities.h>

#include <ctype.h>

#include <netdb.h>

#include <errno.h>

#define bzero(s, len) memset((char *)(s), 0, len)

int errno;

int main (argc, argv)

int argc;

char *argv [];

{

 int Error; /* return value for function calls */

 int iSD; /* socket used to make connections */

 struct hostent *hInfo; /* used to hold host information

 including IP address after

 resolving hostname */

 struct sockaddr_in saiOutgoing; /* holds target IP address & port */

 int iPort; /* target port number argument */

 struct linger lLinger; /* linger structure */

 struct decimal_15_tag /* tempate to hold jiffy times */

 {

 short int pad;

 unsigned long lHigh;

 unsigned short sLow;

 };

 union jiffyTag /* also a jiffy time template */

 { /* both are needed to make the */

 struct decimal_15_tag jTime; /* compiler happy */

 double for_alignment_only;

 };

 union jiffyTag jJiffy1; /* starting jiffy time */

 union jiffyTag jJiffy2; /* ending jiffy time */

 extern void s$read_jiffy_clock(union jiffyTag *);

 double time1; /* starting time in 1 variable */

 double time2; /* ending time in 1 variable */

 double milliseconds; /* ms between time2 and time1 */

 double minTime = 99999;/* minimum connection time seen */

 double maxTime; /* maximum connection time seen */

 double aveTime; /* average connection time */

 double totalTime; /* sum of all connection times */

 struct timeval tTimeout; /* holds timeout for select */

 fd_set fdWrite; /* holds socket of interest for

 select */

 long lNumSuccess = 0;/* number of successful tpings */

 long lNumTries = 0; /* number of tpings send */

 float fAveTime; /* average tping success time */

 float fPercentCompleted; /* percentage of successful

 tpings */

 int i = 0; /* loop index */

 int bSuccess = 0; /* 1 if tping was successful */

 int bTimeout = 0; /* 1 if tping timed out */

 int bSelect = 0; /* 1 if need to call select */

 char szHeader1 [200];/* holds first header line */

 char szHeader2 [200];/* holds select header line */

 char szResponse [80];/* holds response (connected/timeout

 line */

 int fcntl_flags; /* holds fnctl flags to set

 non-blocking */

/* process arguments. If we don't have exactly the right number of arguments

 print out a usage message, a version message and exit */

 if (argc != 4)

 {

 printf ("Usage:\n\ttping host port ping-time\n");

 printf ("\t\tping-time is in seconds\n");

 printf ("\n\nWritten by Noah Davids (noah.davids@stratus.com) version 1.2 2004-05-19\n\n\n");

 exit (0);

 }

/* convert the target port number from character string argument to number

 and sanity check */

 for (i = 0; i < strlen (argv [2]); i++)

 {

 if (!isdigit (argv [2][i]))

 {

 printf ("Port value %s must be a positive number\n", argv [2]);

 exit (0);

 }

 }

 iPort = atoi (argv [2]);

 if (iPort == 0)

 {

 printf ("Error converting %s to port number\n", argv [2]);

 exit (0);

 }

/* convert the timeout value from character string argument to number

 and sanity check */

 for (i = 0; i < strlen (argv [3]); i++)

 {

 if (!isdigit (argv [3][i]))

 {

 printf ("Timeout value %s must be a positive number\n", argv [3]);

 exit (0);

 }

 }

 tTimeout.tv_sec = atoi (argv [3]);

 tTimeout.tv_usec = 0;

 if (tTimeout.tv_sec == 0)

 {

 printf ("Error converting %s to ping timeout value\n", tTimeout.tv_sec);

 exit (0);

 }

/* builder first line of header - basically duplicate the command line */

 sprintf (szHeader1, "tping %s %d %d\n", argv [1], iPort, tTimeout.tv_sec);

/* set up the sockaddr_in structure with address family and port number.

 resolve the host name to an IP address and load the IP address in to

 sockaddr_in structure as well. Note that if the target host name argument

 is already an IP address then gethostbyname just returns it */

 saiOutgoing.sin_family = AF_INET;

 saiOutgoing.sin_port = htons (iPort);

 hInfo = gethostbyname (argv [1]);

 if (hInfo == NULL)

 {

 printf ("\nCould not find address for host <%s>.\n", argv [1]);

 exit (0);

 }

 else

 saiOutgoing.sin_addr.s_addr = *(unsigned long *)(hInfo -> h_addr_list [0]);

 endhostent ();

/* set up the second header line which indicates what the host name was

 resolved to. If the host name was already an IP address this header

 string will be 0 length so we will not print it. If the first character

 of the host name is an alpha character then we know that the host name is

 really a host name and not an IP address */

 strcpy (szHeader2, "");

 if (isalpha(argv [1][0]))

 sprintf (szHeader2, "%s resolved to %s\n", argv [1], inet_ntoa (saiOutgoing.sin_addr));

/* this is the main loop that does all the work. It loops forever until

 terminated by the user with a control-C, BREAK or stop_process. */

while (1)

 {

/* create a socket */

 iSD = socket (AF_INET, SOCK_STREAM, 0);

 if (iSD == -1)

 {

 printf ("Socket creation error %d\n", errno);

 exit (errno);

 }

/* Set non-blocking option. If the program is running on release 14.6.0aq

 or later with stcp-1178 fixed the connect will return immediately instead

 of blocking. If the program is running on a pre-14.6.0aq system then

 the connect will block until it completes or timesout */

 fcntl_flags = O_NDELAY;

 if (fcntl(iSD, F_SETFL, fcntl_flags) < 0)

 {

 printf ("Error %d setting non blocking IO\n", errno);

 exit (errno);

 }

/* Set linger with a zero timeout. If the program is running on release 14.7

 or later with stcp-1179 fixed then this will force the system to send a

 reset when the socket is closed. If the program is running on a

 pre-14.7 release then the option is ignored and the system will go

 through an orderly close. This takes longer but other than that

 the program behaves the same way */

 lLinger.l_onoff = 1;

 lLinger.l_linger = 0;

 Error = setsockopt (iSD, SOL_SOCKET, SO_LINGER, (char *) &lLinger, sizeof (lLinger));

 if (Error == -1)

 printf ("Unable to set linger, error = %d\n", errno);

/* initialize some values */

 lNumTries++;

 bTimeout = 0;

 bSelect = 0;

 bSuccess = 0;

/* set the start time, make the connection, and set a finish time */

 s$read_jiffy_clock (&jJiffy1);

 Error = connect (iSD, (struct sockaddr *)&saiOutgoing, sizeof (saiOutgoing));

 s$read_jiffy_clock (&jJiffy2);

/* Since Jiffy is in two pieces we need to combine it into 1 piece

 to calculate the difference and convert it into milliseconds. This

 is an approximate calculation but its close enough for our purposes */

 time1 = jJiffy1.jTime.lHigh * 65535 + jJiffy1.jTime.sLow;

 time2 = jJiffy2.jTime.lHigh * 65535 + jJiffy2.jTime.sLow;

 milliseconds = (time2 - time1) / 65.535;

/* print a header every 22 output lines so we don't forget who we are

 tpings and what the columns mean. The second line in the header is

 only output if a host name was given instead of an IP address. This

 line reports what the host name resolved to */

 if ((lNumTries % 22) == 1)

 {

 printf ("\n%s", szHeader1);

 if (strlen (szHeader2) > 0) printf (szHeader2);

 printf ("Success/Tries=Percent\tmin/average/max success times\n");

 }

/* Now we can check the error return from connect to see if we need to

 do anythng special */

 if (Error == -1)

 {

 Error = errno;

/* this is what I would expect to see most of the time on a system with

 stcp-1178 fixed. The connect returns with an indication that it is in

 progress. Set the bSelect flag so that we know to call select. Any

 other error is a real error and we abort the program */

 if (Error == EINPROGRESS)

 bSelect = 1;

 else

 {

 perror ("Unexpected error from connect - terminating");

 exit (errno);

 }

 }

/* This can happen if the connect completes very fast. Increment the

 success counter, set the success flag and build a string that holds

 the success string for subsequent reporting */

 else

 {

 lNumSuccess++;

 bSuccess = 1;

 sprintf (szResponse, "Connection in %3.3f ms", milliseconds);

 }

/* connect returned EINPROGRESS so we need to call select. The only

 operation we are interested in writing. When the connection completes

 or is rejected select will flag the write operation as allowable. We then

 get another finish time and calculate a new time difference. */

 if (bSelect)

 {

 FD_ZERO (&fdWrite);

 FD_SET (iSD, &fdWrite);

 Error = select (iSD + 1, (fd_set *) 0, &fdWrite, (fd_set *) 0, &tTimeout);

 s$read_jiffy_clock (&jJiffy2);

 time1 = jJiffy1.jTime.lHigh * 65535 + jJiffy1.jTime.sLow;

 time2 = jJiffy2.jTime.lHigh * 65535 + jJiffy2.jTime.sLow;

 milliseconds = (time2 - time1) / 65.535;

/* check for errors from select, any error is considered fatal */

 if (Error == -1)

 {

 perror ("Unexpected error from select - terminating");

 exit (errno);

 }

 else

/* if select returnes 0 it means there was a timeout. build a response

 string and continue */

 if (Error == 0)

 {

 bTimeout = 1;

 sprintf (szResponse, "Timeout after %3.3f ms", milliseconds);

 }

 else

/* no errors and no timeout, select must have indicated that the socket

 is ready. But you get the same indication when the connection is rejected

 so I do a recv to confirm it is connected. If recv returns a positive

 value then there was something to receive so the socket is connected or

 if recv returns the EAGAIN error it means the socket is connected and

 there is just nothing to recv, count both cases as success. Any other

 return is an error, report it and terminate. The ENOTCONN error has a

 special message since this is the most common case when the target

 host has rejected the connected. */

 {

 Error = recv (iSD, szResponse, 1, 0);

 if (Error > 0)

 {

 lNumSuccess++;

 bSuccess = 1;

 sprintf (szResponse, "Connection in %3.3f ms", milliseconds);

 }

 else

 {

 if (errno == EAGAIN)

 {

 lNumSuccess++;

 bSuccess = 1;

 sprintf (szResponse, "Connection in %3.3f ms", milliseconds);

 }

 else

 if (errno == ENOTCONN)

 {

 printf ("Connection requested rejected - terminating\n");

 exit (errno);

 }

 else

 {

 perror ("Unexpected error from recv after select - terminating");

 exit (errno);

 }

 } /* if (Error > 0) - else */

 } /* if (Error == 0) - else */

 } /* if (bSelect) */

/* Now calculate the statistics. Percent completed is the percentage of

 connection requests that completed. The minimum, average, and maximum

 times are based only on the times for connections that completed, i.e.

 bSuccess == 1. If there was a timeout only the percent completed numbers

 are reported */

 fPercentCompleted = (float) lNumSuccess / (float) lNumTries * (float) 100.0;

 if (bSuccess)

 {

 if (milliseconds < minTime)

 minTime = milliseconds;

 if (milliseconds > maxTime)

 maxTime = milliseconds;

 totalTime = totalTime + milliseconds;

 aveTime = (float) totalTime / (float) lNumSuccess;

 printf ("%d/%d=%3.3f%%\t\t\t%3.3f/%3.3f/%3.3f\t%s\n", lNumSuccess, lNumTries, fPercentCompleted, minTime, aveTime, maxTime, szResponse);

 }

 else

 printf ("%d/%d=%3.3f%%\t\t\t\t\t%s\n", lNumSuccess, lNumTries, fPercentCompleted, szResponse);

/* close the socket. This will result in a reset on 14.7 and later systems.

 On systems before that it will do an orderly release which will take

 longer. Report any errors other than EAGAIN, which is normal for a

 non-blocking socket */

 close (iSD);

 if (Error == -1)

 {

 if (errno != EAGAIN)

 {

 perror ("Unexpected Error during close - terminating");

 exit (errno);

 }

 }

/* If there wasn't a timeout go to sleep for the timeout period. I don't

 try to figure out how much time the connect took and then subtract that

 from the timeout, it’s just not worth the effort to try to be that exact

 in the timing of the tping packets */

 if (!bTimeout)

 {

 sleep (tTimeout.tv_sec);

 }

 } // while (1)

 exit (0);

}

Compiling and binding

To compile the above code you can use the following command macro (make_tping.cm). Run the command macro as a started process (start_process make_tping.cm) so that the changes it makes to your search paths do not affect your login session. It first deletes all the library paths that it is going to need so that when it adds them they are added in the correct order.

d make_tping.cm

%phx_cac_j14#m14_d02>CAC>Noah_Davids>make_tping.cm 04-05-18 13:47:11 mst

!delete_library_path include (master_disk)>system>include_library

!delete_library_path include (master_disk)>system>stcp>include_library

!delete_library_path object (master_disk)>system>object_library

!delete_library_path object (master_disk)>system>c_object_library

!delete_library_path object (master_disk)>system>posix_object_library

!delete_library_path object (master_disk)>system>stcp>object_library>common

!delete_library_path object (master_disk)>system>stcp>object_library>net

!delete_library_path object (master_disk)>system>stcp>object_library>sbsd

!delete_library_path object (master_disk)>system>stcp>object_library>socket

!delete_library_path object (master_disk)>system>stcp>object_library

!add_library_path include (master_disk)>system>include_library -after '(current_dir)'

!add_library_path include (master_disk)>system>stcp>include_library -after '(current_dir)'

!add_library_path object (master_disk)>system>object_library -after '(current_dir)'

!add_library_path object (master_disk)>system>c_object_library -after '(current_dir)'

!add_library_path object (master_disk)>system>posix_object_library -after '(current_dir)'

!add_library_path object (master_disk)>system>stcp>object_library>common -after'(current_dir)'

!add_library_path object (master_disk)>system>stcp>object_library>net -after '(current_dir)'

!add_library_path object (master_disk)>system>stcp>object_library>sbsd -after '(current_dir)'

!add_library_path object (master_disk)>system>stcp>object_library>socket -after'(current_dir)'

!add_library_path object (master_disk)>system>stcp>object_library -after '(current_dir)'

!cc tping

!bind tping

History of document:

Version
Date

Notes

1

May 20, 2004

initial release

1.1

November 26, 2010
added disclaimer to source code

