Connecting with Streams TCP (STCP)

The behavior of a connecting socket under Streams TCP (STCP) is significantly different then a socket under OS_TCP. In this article I’ll explain how a connecting STCP socket behaves and some of the things to watch out for.

First, remember that there are 3 phases of a connection, the so-called 3-way handshake of TCP. First, the client sends a packet to the server with the SYN flag set. The server then acknowledges the SYN packet and also sends back to the client a packet with the SYN flag set. Typically these two actions are combined into one SYN-ACK packet. Finally the client sends a packet acknowledging the server’s SYN packet. The client is the system that initiates the connection, i.e. sends the initial SYN packet. It doesn’t matter if the client host is a PC workstation or the Stratus module.

First lets talk about the scenario where the Stratus module is the client. Your application creates a socket and calls “connect” to initiate a connection. How can this simple scenario in STCP be different from OS_TCP? Well …

1) STCP does not support non-blocking connects

In OS_TCP it is possible to set the socket to non-blocking mode before calling “connect”. “Connect” would then return immediately and you would have to somehow (typically via “select”) test the socket to determine when it was ready for use. STCP does not allow you to do this. A socket cannot be placed into non-blocking mode until after a connection is established. You can make a call to the “fcntl” function to place the socket into non-blocking mode but it will not have any effect, the “connect” will still block until it completes or times out.

2) Processes waiting for a connection to complete are uninterruptible
In OS_TCP a user may abort a program that has called “connect” by pressing control-C or BREAK. In STCP the call to “connect” ends in a kernel routine., and once in the kernel there is no way to abort the program until it exits the kernel. This will happen only when the connection completes or times out. The default timeout is approximately 5 minutes.

This problem is documented in QTS entry stcp-1512. Beginning with VOS release 14.3.1al STCP offers a way to adjust the default timeout period. The external variable tcp_synsent_abort_interval$ can be set to the number of seconds that STCP should spend trying to complete a connection. The normal retransmission backoff times are still used, so by reducing the wait time you are also reducing the number of SYN-ACK retransmissions that are done. In a heavily congested network or one with a high error rate multiple retransmissions may be needed to complete the connection so reducing the time will increase the probability that the connection request will fail. The retransmission times (in seconds) are:

Packet Absolute
 Relative

number
delta
 delta

 1 0

 2 2.178 2.178

 3 4.366 2.188

 4 8.745 4.379

 5 17.500 8.755

 6 35.016 17.516

 8 70.035 35.019

 8 140.089 70.054

 9 279.481 139.392

Packet 1 is the initial SYN packet. If you change the timeout to 10 seconds you will get only 3 retransmissions (plus the initial packet). Changing the timeout to 15 does not gain you another retransmission but does give the server an extra 5 seconds to respond. Note that while waiting, the process is still in the kernel and hence uninterruptible, it’s just there for fewer seconds.

Keep in mind that changing this value will change the behavior for all STCP clients, not just your client.

Now lets switch gears and assume that the Stratus module is the server. Remember that the normal sequence of calls is

1) Create the socket by calling the “socket” function

2) Associate the socket with a specific port (and maybe a specific IP address) by calling “bind”

3) Tell STCP to listen on that socket and set up the size of the backlog queue by calling “listen”

4) Accept an incoming connection request by calling “accept”. This step will be repeated multiple times, once for each connection established.

While the sequence of steps is the same as in OS_TCP there are several major difference in how the two TCP stacks behave…

1) Connection requests are ignored until accept is called

Under OS_TCP once “listen” is called connection requests up to the backlog count are automatically completed, i.e. a SYN-ACK is sent back, without any action from the server application. The server application calls “accept” to get a connected socket but from the point of view of the client the connection is already established. Under STCP, connection requests are ignored until “accept” is called. One of the big implications of this is that when your application returns from calling “accept” and is processing the new connection there is no longer an “accept” pending and incoming connection requests are ignored until your application makes a call to “accept”.

2) Connection requests are reset if the backlog is exceeded

In OS_TCP once the backlog queue limit is reached incoming connection requests are ignored. The theory is that the client will retransmit the connection request in a few seconds and hopefully by then the server application would have accepted the pending connections in the backlog queue and free up space for more connections to be SYN-ACKed. If the backlog queue remains full the client’s TCP stack will eventually timeout the connection request and return a timeout error to the client application. STCP does not subscribe to this theory. In STCP the connection request is placed in the backlog queue but otherwise ignored (until an “accept” is done). Once the backlog queue reaches its limit any new connection requests are responded to with a RST packet. This tells the client to stop trying to make the connection. The client application will get an error about the connection being refused. This is the same error it would get if the STCP server application where not running at all. The best way to program a client application to handle this will depend on the application. One way might be to simply retry the connection after a refusal error, at least a few times before reporting the error back to the user.

Note that the behavior documented in QTS entry stcp-1427 can cause connection requests below the backlog limit to also get an RST response. What happens is that each connection request is added to the backlog queue, even if it is a retransmitted request. The result is that the backlog fills up faster and a request that may already be in the backlog queue can be sent a reset. This is fixed in all versions of STCP beginning with VOS 14.4.

3) Accept can return before socket is ready for use

In OS_TCP once “accept” returns with a new socket you are able to use it immediately. However, in STCP there is a race condition where it is possible to get an ENOTCONN error when you try to use the new socket. The problem is that “accept” returns as soon as the SYN-ACK is sent but before the final 3rd packet is received. Until that 3rd packet, containing the client’s ACK of the server’s SYN-ACK, is received the socket is not fully connected so any attempt to use it will fail, returning ENOTCONN. You will have to make sure that any attempts to use the socket also test for this return code and handle it by repeating the attempt. This is documented in QTS entry stcp-1563.

STCP will retransmit the SYN-ACK packet multiple times but after about 65 minutes will give up and shut down the socket. After the socket is shut down the application will continue to get ENOTCONN errors if it tries to use the socket. So your application has to have some way to stop trying to use the socket besides a change in the error code. This behavior will be corrected when stcp-1563 is corrected, since “accept” will not return until the socket is ready for use.

In addition to processing the ENOTCONN error and timing out the use of the socket there is the issue of the system resources that are used while trying to establish the connection. To reduce the time that the resources are in use the changes made for stcp-1512 also added the external variable tcp_synrcvd_abort_interval$. This variable allows you to adjust the length of the retry phase (in seconds). Like tcp_synsent_abort_interval$, tcp_synrcvd_abort_interval$, is a global value that effects all connections on the module. The default pattern of packets is shown in the following table, times are in seconds.

Packet absolute
 relative

number
delta
 delta

 1 0

 2 0.3400
 0.3400

 3 2.4910
 2.1510

 4 4.6800
 2.1890

 5 9.0580
 4.3780

 6 17.8120
 8.7540

 7 35.3210
 17.5090

 8 70.3480
 35.0270

 9 140.3870
 70.0390

 10 280.4670
 140.0800

 11 560.6920
 280.2250

 12 1121.0800
 560.3880

 13 1681.4660
 560.3860

 14 2241.8430
 560.3770

 15 2802.2200
 560.3770

 16 3362.5630
 560.3430

 17 3922.9420
 560.3790

The first packet is the incoming SYN packet. Packets 2 thru 16 are SYN-ACK packets and packet 17 is an RST packet. So even after the last SYN-ACK is sent the client has another 560 seconds to send an ACK. The overall time from incoming SYN to RST is slightly over 65 minutes. Reducing the time will not affect the pattern of SYN-ACK retransmissions.

4) STCP does not support load balancing of server applications

OS_TCP has the ability to distribute the number of active connections between multiple server applications all listening to the same port. STCP does not have this capability. You can run multiple servers all listening to the same port but the first server to bind to the application’s port will get all of the connections. Note that it’s the binding order not the listening or accepting order that controls which application process gets the connections. If the process that calls “bind” first has not called “accept” the connection request goes into the backlog queue – even if a second process has called “accept”.

Keep in mind that STCP is a completely new implementation of TCP. While it implements the TCP/IP family of protocols there is no requirement that it behave exactly as OS_TCP, or any other TCP stack. Before relying on a specific feature make sure that STCP really implements that feature and implements it in the way you expect.

