Balancing the load, multiple TCP application servers

Many sites have created TCP_OS applications where multiple application server processes all open TCP sockets on the same port. The assumption is that TCP will load balance between all the servers. This is not strictly speaking true and under some conditions may not even be remotely close to the truth.

First off how can multiple processes all bind sockets with the same port number? A TCP socket is identified by a 4-tuple, local IP address, local port number, foreign IP address and foreign port number. As long as this 4-tuple is unique the TCP protocol can figure out what socket an incoming packet belongs to or where to send an outgoing packet. But for a server’s listening socket the foreign IP address and port number are 0 and more then likely the local IP address is 0 as well. So, without special handling you cannot create two sockets and have them both bound to the same port number. When the second socket is bound it gets an “address already in use” error.

The special processing comes in the form of the socket option SO_REUSEADDR. This option is set via the setsockopt function call.

int reuse = 1;

if (setsockopt (sd1, SOL_SOCKET, SO_REUSEADDR, (char *)reuse,

sizeof (reuse)) < 0)

 {

 strcpy (message, "Unable to set SO_REUSEADDR");

 s$error (&errno, “REUSE”, &message);

 exit (1);

 }

This however, is only half of the battle. Now that two sockets are bound to the same port number and both set to listen for incoming connections how do you control which socket and from there which application server process will be notified of an incoming connection request?

The TCP_OS stack on VOS has two modes for dealing with multiple sockets all listening on the same port number.

Balanced mode is the default, but balanced mode does not mean round robin assignment, which some people have assumed. The TCP_OS stack keeps a counter of the number of active connections opened against each listening socket. This counter is part of the socket structure and can be displayed via the analyze_system request dump_tcp_socket.

as: dump_tcp_socket C1248700

 *** Socket at 0xC1248700 ***

 in use user_active protocol_active

 socket type 1 (Stream)

 socket options acceptcon reuseaddr

 event ID 0xC0BA09C0

 lock info ptr 0xC1248840

 available for xfer flag cleared

 protocol control block 0xC09E8040

 socket address family 2 (Inet)

 so_mbz1 73

 state flags priv

 control flags cached

 read mbufs 0x00000000

 rcvfrom names 0x00000000

 linger time 0

 number of accepted conn's 1 <<<<<<<<<<<< connection counter

 maximum accepted conn's 0 <<<<<<<<<<<< max_connects counter

 parent socket (via accept) 0x00000000 (see below)

 protocol handle 0xC170C5FC

 next socket 0x00000000

 previous socket 0xC12484C0

 so_portep 0x00000000

Whenever a connection is established this counter goes up, when the connection is closed the counter goes down. With 1 exception, the TCP_OS stack will assign the next connection to the socket with the lowest connection counter. If two sockets have the same connection counter the socket created last wins. If each connection results in the same amount of CPU and disk activity this means that at any given time all the servers are about equally busy. If however, you create more servers then you have simultaneous connections its possible that the servers created first will never get any connections. Also if you have 5 servers and all 5 have N connections and you start a new server, that server will get all new incoming connections until its connection counter is equal to N.

The exception I mentioned is inetd. Inetd will not be given the incoming connection if there are any other listening sockets unless the other listening socket’s connection counter is equal to the socket’s max_connects value, and the max_connects value is greater than 0. The max_connects value is also stored in the socket structure and can be displayed with the dump_tcp_socket analyze_system request.

This is not something that application programmers need to worry about since only the telnet servers, os_telnet and telnet_msd can set the max_connects value. This is done via the max_sessions argument in the os_telnet and telnet_msd command lines. (But I wanted to cover it because it is part of the balancing mechanism.)

There is one more wrinkle to balanced mode, the bug otp-787. Basically, it states that under certain conditions the connection counter is not correctly decremented. In the case of the telnet servers this can result in many telnet servers being started during the day, luckily they all terminate at midnight. For your application servers it means that you cannot just start up a new server if you need one. For example, say that your system has been up for 5 months and you have 5 application servers all listening on port 4567. After 5 months 1 server terminates for some reason and is restarted. Now that one server will get all the connections and more than likely the other 4 servers will sit idle for the next month. Since you were running 5 servers its safe to assume that you needed them for performance reasons so now the performance of your application will suffer. The only solution is to stop all the application servers and start them all up again. The good news is that this bug has been fixed in:

13.3.4o, 13.4.1I, 13.5.0ao, 14.0.2l, 14.1.0ag, 14.2.0ac, and 14.3.dev.bl

If balanced mode is one of the two modes under TCP_OS what’s the other? Unbalanced or no balanced mode of course. In this mode the connection is given to the last socket created that is bound and listening to the port and the other sockets are ignored – even if that last socket has not done an accept. In no_balanced mode it makes no sense to have multiple processes all listening on the same port.

Mode selection is controlled by the external variable tcpos_no_balanced$ a value of 0 means balanced mode is set and a value of 1 means that balanced mode is off. You can use the set_longword request in analyze_system change the value:

as: set_longword tcpos_no_balance$ 1
Notice I said nothing about how *you* control which socket gets the incoming connection. There is no way for you to either programmatically or administratively control which socket and process will get the connection. If you have multiple sockets all listening on the same port number then the application servers that opened those sockets had better be identical.

What about other Stratus TCP stacks?

STCP allows multiple processes to bind and listen to the same port as long as SO_REUSEADDR is set. However, the STCP stack will give all incoming connection requests to the first socket bound to the port. No other socket is ever notified of an incoming connection. For people planing on porting their applications from OS_TCP to STCP this is a big point. You will need to redesign the application to have only 1 listener.

HP-UX 11.0 and FTX 3.4 will not let two sockets bind to the same port, even with SO_REUSEADDR set.

